Quadratic functions and expressions

All, some or none?

For each question there are 5 related statements. In each case decide which of them are true.

1. The quadratic $y=x^{2}-2 x-3$:
a. rearranges to $y=(x-1)^{2}-2$
d. has an axis of symmetry at $x=1$
b. Has a y intercept at -3
e. has a minimum value of -3
c. factorises to $y=(x-3)(x+1)$
2. The quadratic $y=(x+1)^{2}+2$:
a. rearranges to $y=(x+1)(x+2)$
d. has an axis of symmetry
b. has a minimum value of 2
e. doesn't cross the x axis
c. always has positive values for y
3. All quadratics:
a. have an axis of symmetry
d. cross the y axis once
b. cross the x axis
e. have a minimum value
c. can be arranged to a completed square format

Challenge: For any statements that are false in question 3, give counter examples and explain when and why they are false.

Quadratic functions and expressions

Teacher notes

Content:

- Manipulating different forms of quadratic functions and relating them to the graphical representation

Possible uses:

- As an extension task for able pupils
- As a consolidation task

Resource options:

- PowerPoint file for whole class projection
- Worksheet for individual pupils

Answers

1. 3 are true (b c d)
2. 4 are true (bcde)
3. 3 are true (acd)

Challenge question:
b) positive quadratics, with a minimum value >0 do not cross the x axis; negative quadratics with a maximum value <0 do not cross the x axis
e) negative quadratics do not have a minimum value (but do have a maximum value instead).

