Algebraic Expressions 1 Maze

Starting from $a^{2} b$ find a route to the opposite side of the rectangle so that each value you land on is equivalent to $a^{2} b$.

You may only move one space horizontally or vertically each time - no diagonal moves allowed!

$\frac{2 a^{2} b}{4}$	$a \times b^{2}$	$\frac{a^{6} b^{3}}{3}$	$\frac{a^{2} b}{a}$	$\frac{a b}{a^{3} b^{2}}$	$2 \times a \times b$	$2 b \times a$	$b a a$
$\frac{a^{3} b}{\sqrt{a}}$	$a \times a \times b$	$\frac{a^{2}}{b^{-1}}$	$\frac{(a b)^{3}}{a b^{2}}$	$(a b) a$	$\frac{(2 a b)^{2}}{2 b}$	$\frac{a^{2} b^{3}}{b^{2}}$	$b a^{2}$
$\frac{a^{3} b^{2}}{a b}$	$\frac{(2 a b)^{2}}{4 b}$	$2 a b$	$a b \times b a$	$\frac{a^{2} b^{2}}{b}$	$\frac{a^{2} b^{4}}{b^{4}}$	$a \times 2 \times b$	$\frac{a b^{2}}{a^{3} b}$
$a^{2} b$	$(a b)^{2}$	$(\sqrt{a} \times b)^{2}$	$a+a+b$	$\frac{\left(2 a^{2} b\right)^{2}}{4 a^{2} b}$	$\frac{b}{a^{-2}}$	$\frac{(2 a)^{2} b}{2}$	$\frac{a^{3} b}{a}$
$2 a \times b$	$\frac{(a b)^{3}}{a b}$	$\frac{a}{(a b)^{-1}}$	$\frac{a^{3} b^{3}}{a b^{2}}$	$\frac{(a b)^{2}}{\sqrt{b}}$	$\frac{a^{5} b^{5}}{a^{3} b^{4}}$	$\sqrt{a^{4} b^{2}}$	$\frac{a^{4} b^{2}}{2}$
$a^{2} \times b$	$a b \times a b$	$(b a)^{2}$	$a b \times b$	$\frac{(2 a \sqrt{b})^{2}}{2}$	$\frac{a^{8} b}{a^{4}}$	$\frac{2(a b)^{2}}{2 b}$	$\frac{(a b)^{2}}{b}$

